A STRUCTURAL EQUATIONS MODEL OF CORPORATE REPUTATION USING R

Mihaela Cornelia Sandu (mihaela.sandu@faa.unibuc.ro) Rodica Ianole (rodica.ianole@faa.unibuc.ro)

Faculty of Business and Administration University of Bucharest

Corporate reputation

- Warren Buffet: "You need 20 years to build a reputation and only 5 minutes to destroy it"
- Benjamin Franklin: "It takes a lot of good things to build a good reputation and only one bad thing to lose it"

Corporate reputation

- Is a valuable and highly sensitive intangible asset
- Is the result of repeated actions obtained in time and from experience accumulated
- Is the way that others perceive us
- Helps a company to achieve its objectives and to maintain competitive advantage

The rationale of our study

- Each stakeholder may perceive <u>a slightly</u> <u>different</u> dimension of the reputational phenomenon
- The aim is to test the perception about corporate reputation:
 - from the posture of a potential buyer
 - from the posture of a potential investor
 - from the posture of a potential employee
 - from the posture of an individual that recommends the company to other people

The approach

- A 46-items questionnaire and answers were measured on a 5-point Likert scale
- The questionnaire was adapted in Romanian from the study of Puncheva-Michelotti (2008)
- It follows the line of the Reputation Quotient scale, considered a balanced instrument of inquiry in this area

Ten latent variables

- 1. Emotions associated to reputation or the perception on reputation work place
- 2. Workplace
- 3. The customer value for the company
- 4. Management and leadership
- 5. Product/service differentiation
- 6. The credibility of the company
- 7. Social contribution and impact on customers
- 8. Ethics and social responsibility
- 9. Economic performance
- 10. Patriotism

Research method: structural equation modeling (SEM)

- Explains on average between 57% and 65% of the total variance in the reputation of the company
- Emphasizes the set of significant latent factors named earlier for each of the four cases

Implementation of SEM in R

- install.packages("lavaan", dependencies = TRUE)
- install.packages("semTools")
- install.packages("semPlots")

Call those packages using the function "library"

- library(lavaan)
- library(semPlots)
- library(semTools)

Examine the working dataset

• *class*(...)

• *str*(....)

head(...)

The R code for the baseline model

- myModel <- "
- emotional_appeal =~ v1 + v2 + v3
- $workplace = \sim v4 + v5 + v6$
- $customer_value = ~v8 + v9 + v10 + v11 + v12$
- management_leadership =~ v7 + v13 + v14 + v15 + v16 + v17 + v18 + v19 + v20
- *differentiating* =~ *v21* + *v22* + *v23*
- $credibility = \sim v24 + v25 + v26$
- social_contribution_customer_impact =~ v27 + v28 + v29 + v30
- ethical_social_responsibility =~ v31 + v32 + v33 + v34 + v35 + v36 + v37
- economical_performance =~ v38 + v39 + v40 + v41 + v42
- patriotism =~ v43 + v44 + v45 + v46"

Graphic representation of the baseline model

Step 1. Confirmatory factor analysis (CFA)

- *fit <- cfa(myModel, data =)*
- summary(fit, fit.measures = TRUE, rsq=T)

The output of CFA consists of three parts:

- 1. The first six line form the header
- 2. The second part contains additional fit measures
- 3. The third part contains the parameter estimates

CFA output for buying decision

lavaan (0.5-20) converged normally after	151 iterations
Number of observations	105
Estimator Minimum Function Test Statistic Degrees of freedom P-value (Chi-square)	ML 1906.653 944 0.000
Model test baseline model:	
Minimum Function Test Statistic Degrees of freedom P-value	4013.718 1035 0.000
User model versus baseline model:	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.677 0.646
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)	-5437.166 -4483.840
Number of free parameters Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	137 11148.333 11511.926 11079.117
Root Mean Square Error of Approximation:	
RMSEA 90 Percent Confidence Interval P-value RMSEA <= 0.05	0.099 0.092 0.105 0.000
Standardized Root Mean Square Residual:	
SRMR	0.098
Parameter Estimates:	
Information Standard Errors	Expected Standard

CFA for the four models

Indicator	Expected value		Value in the model (invest in a company)	Value in the model (work for a company)	
Convergence & number of iterations		Yes, 151 iterations	Yes, 172 iterations	Yes, 139 iterations	Yes, 164 iterations
Observations	As big as possible	105	102	108	99
Chi-square	> 0.05	0.000	0.000	0.000	0.000
CFI	> 0.95	0.677	0.707	0.736	0.741
TLI	> 0.95	0.646	0.679	0.710	0.716
RMSEA	< 0.07	0.099	0.097	0.079	0.086
90% Confident Interval	(0; 1)	(0.092; 0.105)	(0.090; 0.103)	(0.072; 0.086)	(0.079; 0.093)
SRMR	< 0.08	0.098	0.098	0.087	0.086
AIC	As small as possible	11148.333	8599.412	10704.875	8624.821

Improving the model

• We can eliminate variables with an R-squared value smaller than 0.5

• OR,

 We can eliminate those variables that do not fit; (by calculating modification indices and eliminating those with the biggest values modindices(fit))

CFA for the four models after improvements

Indicator	Expected value	Value in the model (buy from a company)	Value in the model (invest in a company)		Value in the model (promote a company)
Observations	As big as possible	105	102	108	99
Chi-square	> 0.05	0.298	0.084	0.063	0.148
CFI	> 0.95	0.992	0.981	0.969	0.979
TLI	> 0.95	0.989	0.968	0.957	0.974
RMSEA	< 0.07	0.033	0.070	0.061	0.037
90% Confident Interval	(0; 1)	(0; 0.082)	(0; 0.123)	(0; 0.100)	(0; 0.064)
SRMR	< 0.08	0.046	0.051	0.056	0.067
AIC	As small as possible	2434.637	1329.810	2172.685	3395.625

Step 2. Structural equation modeling

• To perform *sem()* first we will complete the code for the baseline model with the following syntax:

```
    emotional_appeal ~ workplace +
        customer_value + management_leadership +
        differentiating + credibility +
        social_contribution_customer_impact +
        ethical_social_responsibility +
        economical_performance + patriotism
```

- The R code used to fit the model and to see the results is the following:
 - fit <- sem(myModel, data =)</pre>
 - summary(fit, standardized=TRUE)

The R code for the SEM

- plot resulted using semPaths function in qplots
 - semPaths(fit,"std",edge.label.cex = 0.5, curvePivot= TRUE, layout="tree")
- or
 - semPaths(fit, what='path', whatLabels='std')

Model 1 - the "buy from a company" case

Model 2 - the "invest in a company" case

Model 3 - the "work for a company" case

Model 4 - the "promoting a company" case

Conclusions (1)

- Latent variables that determine "emotional appeal" in the four different cases analyzed:
 - for the decision to buy from a company economical performance of the company and the patriotism;
 - for the decision to invest in a company differentiating and economical performance;
 - for the decision to work for a company management &leadership and economical performance;
 - for the decision to promote a company customer value, social contribution & customer impact, ethical & social responsibility and patriotism.

Conclusions (2)

- Reputation is a representation in the mind.
- It affects attitudes, which in turn affect behavior.
- Economic performance is present in three of the four cases analyzed – dominance of economic rationality for the formation of corporate reputation
- The fourth case is distinctive from the others economic performance was replaced by more intrinsic attributes like customer values, social contribution and ethical aspects.

Thank you for your attention!