
A Web Service for Processing Location Data
from Mobile Phones

Stefan Fleck

2020-12-04

Outline

1. Processing location data

2. Web services with R

3. Architecture and code examples

4. Conclusion

2/12

Travel distance from position data

Outliers

Gaps

The mobile phone records:

Outlier-cleanup necessary

Imputation of gaps necessary (via
routing)

·

Geo-position every x seconds
(varies by device)

Positional accuracy

Speed

-

-

-

·

·

3/12

Leaflet | © OpenStreetMap contributors © CARTO

http://leafletjs.com/
https://www.openstreetmap.org/copyright
https://carto.com/attributions

Travel distance from position data II

1. Remove points where

2. Connect points that are close together with straight lines

3. Use external routing service to connect points further than 50m apart

position accuracy is less than 20m

reported speed is less than 7kph (walking)

calculated speed is greater than 130kph (outliers)

·

·

·

reported speed: Speed according to speed sensor of the device

calculated speed: Speed calculated from position & timestamp

How do we integrate our R code in production?

Problem: A new journey can be submitted at any time of the day and needs to be
processed within minutes

🐒 Manually execute the script each time we receive a new journey

👨 Write an R-Script that is callable from the the command line

🚀 Turn your R-code into a web-service!

·

·

Makes it hard to ensure a stable R environment

Maintenance of the script involves another party

-

-

·

5/12

Advantages of web services

Clear separation of concerns (“good fences make good neighbors”)

Virtually all programming languages can use HTTP APIs

Execution environment can be tightly controlled

Easy to deploy different version of the service (dev, test, prod)

A service is reusable and not limited to a single project

(for our project) We could re-use existing code from a different project

·

·

·

·

·

·

Web Service: A service that runs on a server and responds to requests
(usually via HTTP)

HTTP: A protocol for computers to communicate with each other

API: Application Programming Interface: A part of a program that enables it
to communicate with other programs 6/12

Architecture

Each component can easily be replaced
as long as its API stays stable!

API

API

API

geoprocessing
service

routing
service

mobile-app
backend

0101
1001

0011
0101

1001
0011

0101
1001

0011
0101

1001
0011

Mobile-App communicates with
backend

Backend communicates with
geoprocessing service

Geoprocessing service
communicates with external routing
service

·

·

·

7/12

Server code

#* Calculate the fastest route

#* @param ride_id integer id

#* @response 400 Impossible Route Rrror: routing not possible (e.g. Islands)

#* @response 504 Gateway Timeout Error: routing backend may be down.

#*

#* @get /v1/rides/<id>/summary

rides_summary <- function(

 id = "", # from the path definition above

 res # special plumber object: the Response

){

 r <- tryCatch({

 calculate_fastest_route(id)

 },

 impossible_route_error = function(e){res$status <- 400},

 gateway_timeout_error = function(e){res$status <- 504}

)

 r

}

HTTP status codes 8/12

https://tools.ietf.org/html/rfc7231#section-6

Client code

Sending a GET request from R

Or from the command line

client API

GET .../rides/12345/summary

Server

Response

res <- httr::GET("https://<...>/rides/12345/summary")

httr::content(res)

$distanceAustria

[1] 297334.3

$distanceForeign

[1] 0

curl https://<...>/rides/12345/summary

9/12

API Documentation

HTTP request methods

OpenAPI specification 10/12

https://tools.ietf.org/html/rfc7231#section-4
https://swagger.io/specification/

Conclusion

“Anyone who doesn’t do this will be fired. Thank you; have a nice day!”
– Jeff Bezos

HTTP APIs are a powerful tool for patching applications together

Providing services with well-behaved APIs is a great way for different teams to
collaborate on complex IT projects

The plumber package makes it easy to create HTTP APIs for your project

The httr package makes it easy to access HTTP APIs

Use APIs!

·

·

·

·

·

11/12

https://api-university.com/blog/the-api-mandate/

Further reading

plumber: An API Generator for R

httr: Tools for Working with URLs and HTTP

HTTP: The Protocol Every Web Developer Must Know

Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

What is REST

The Austrian Road Freight Transport Mobile App - Video or Brochure [in German]

This Presentation

Contact
stefan.fleck@statistik.gv.at

https://github.com/s-fleck

12/12

https://www.rplumber.io/
https://github.com/r-lib/httr
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177
https://tools.ietf.org/html/rfc7231
https://restfulapi.net/
https://www.youtube.com/watch?v=_RpJUSiBZaI&feature=youtu.be
https://www.statistik.at/wcm/idc/idcplg?IdcService=GET_PDF_FILE&dDocName=122327
https://github.com/s-fleck/simple-webservices-with-plumber-uros2020
mailto:stefan.fleck@statistik.gv.at
https://github.com/s-fleck

