Methods for classifying nonprofit organisations according to their field of activity:

A report on semi-automated methods based on text

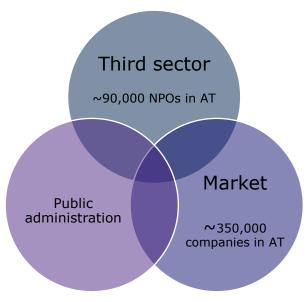
uRos 2020 - 8th International conference on the Use of R in Official Statistics 02.12.2020

Julia Litofcenko, Dominik Karner, Florentine Maier Institute for Nonprofit-Management

Outline of the presentation

- Motivation
 - Nonprofit organizations not systematically integrated into public statistics
 - Aim: Mapping the sector according to area of activity
- Empirical setting
 - Registry of associations in Austria
- Methods
 - Classification with a rule-based or dictionary approach
 - Classification with Naive Bayes, Lasso regression and decision trees
- Findings
- Conclusion
 - NPOs can satisfactorily be classified according to areas of activity based on names only with semi-automated approaches

Motivation



Sectoral model of society

- Third sector: Nonprofit organizations (NPOs) following ideational goals
- Definition (Salamon & Anheier, 1992: 12f):
 - Formal: institutionalized to some extent
 - Private: institutionally different from government
 - Non-profit-distributing: not returning profits generated to their owner or directors
 - Self-governing: equipped to control their own activities
 - Voluntary: involving some meaningful degree of voluntary participation, either in the actual conduct of the agency's activities or in the management of affairs
- Not systematically integrated into public statistics in Austria and most countries, although recommend by the UN statistical division (United Nations, 2018)

Sports, culture and arts, social clubs

Social services & membership organizations

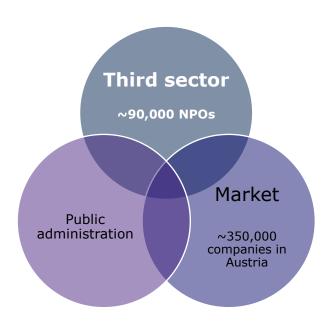
Business & professional associations, interest groups, political associations

Gemeinsam Ressourcen sichern

AUSTRIAN BIOMASS ASSOCIATION

Die Stimme der Gemeinnützigen

Motivation

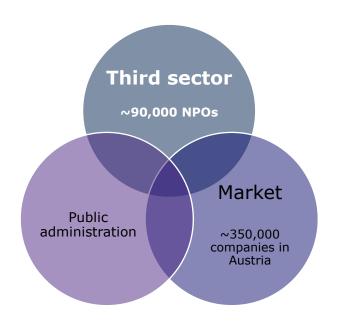


Aim: Mapping the sector according to area of activity

Scattered data:

- Registry of associations: ~90,000
- Commercial register: ~1,200
- Payroll tax statistics: ~12,000 NPOs as employers
- 11 databases for ~500 foundations
- Occasional survey data (max. 12,000 participants)

Motivation



Aim: Mapping the sector according to area of activity

Scattered data:

- Registry of associations: ~90,000
- Commercial register: ~1,200
- Payroll tax statistics: ~12,000 NPOs as employers
- 11 databases for ~500 foundations
- Occasional survey data (max. 12,000 participants)

Empirical setting

Registry of associations

- Ministry for the Interior
- Not publicly available
- Not digitized

Copy from business information publisher Compass Verlag GmbH

- Collects data for financial institutions
- Digitized:
 - Association's name
 - Address
 - Founding year
 - Legal representatives
 - NO bylaws or mission statements
- Not completely up to date (most recent two years not reliable)

Empirical setting

Area of activity

- International Classification of Nonprofit Organizations (ICNPO) (Salamon and Anheier, 1992)
- Internationally comparable, similar to NACE

ICNPO (Sub-)group number	ICNPO (Sub-)group name
1 000	Culture and recreation
1 100	Culture and arts
1 200	Sports
1 300	Other recreation and social clubs
2 000	Education and research
3 000	Health
4 000	Social services
5 000	Environment
6 000	Development and housing
7 000	Law, advocacy and politics
8 000	Philanthropic intermediaries and voluntarism promotion
9 000	International
10 000	Religion
11 000	Business and professional associations, unions
12 000	Not elsewhere classified

VD A

Method

Machine learning (ML) approaches as a common starting point (e.g. Naïve-Bayes classifiers, decision trees, regression methods, neural networks)

Good results with (Fisher, 2016; Lepere-Schloop, 2017; Ma, 2020)

- i. Large training samples
- ii. Long, high quality texts

Problems

- i. Training sample needs to be constructed manually -Best Model, trained on 3.333 cases, classifies only 49% of NPOs correctly
- ii. Long texts: Not available/ quality issues

Constructing a benchmark sample

Performance of manual human coding (Litofcenko, Karner, Maier, 2020)

ICNPO Group		True ICNPO (n)	True ICNPO %	Sensitivity of mode of human coders %	Precision of mode of human coders %
1100	Culture	994	20%	92%	94%
1200	Sports	1061	21%	92%	96%
1300	Other Recreation and Social Clubs	909	18%	87%	84%
2000	Education and Research	299	6%	86%	92%
3000	Health	94	2%	70%	80%
4000	Social Services	385	8%	82%	91%
5000	Environment	84	2%	71%	92%
6000	Development and Housing	404	8%	85%	82%
7000	Law, Advocacy and Politics	187	4%	71%	83%
8000	Philanthropic Intermediaries and Voluntarism Promotion	6	0%	50%	100%
9000	International	75	2%	87%	88%
10000	Religion	90	2%	66%	89%
11000	Business and Professional Associations, Unions	350	2%	81%	82%
12000	Not Elsewhere Classified	62	1%	13%	100%
Total		5000	100%	85%	

Sensitivity =
$$^{TP}/_{(TP+FN)}$$

Precision =
$$^{TP}/_{(TP+FP)}$$

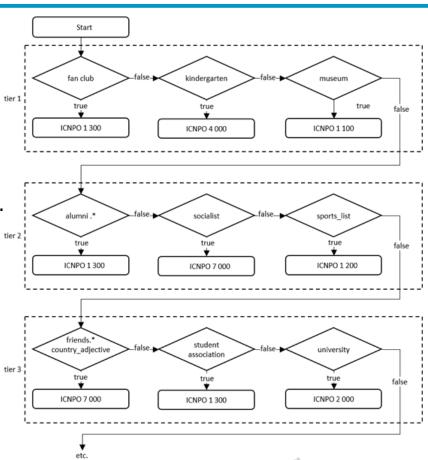
Dictionary or rule-based approach

Applicable if (Zhai & Massung, 2016)

- i. Categories are clearly defined.
- ii. Categories can be relatively easily distinguished based on surface features in the text (e.g., particular words).
- iii. Researchers have sufficient domain knowledge to suggest many effective rules.

In the Austrian case:

- 3090 search terms arranged in 211 tiers
- Including wildcard-lists (sports, professions, countries and so forth)



Dictionary or rule-based approach

See https://epub.wu.ac.at/6767/

Δ	A	В	С	D			
1	search_term	preliminary_ICNPO_ marker	tier	ICNPO_category			
2	.*musikfreunde	01100_1	1	1100			
3	kapelle	01100_1	1	1100			
4	museum	01100_1	1	1100			
5	musikfreunde	ikfreunde 01100_1 1					
6	traditions verband	01100_1	1	1100			
7	.*chor	01100_4	1	1100			
8	.*absolventen.*	01300_1	1	1300			
9	.*kanarien.*	01300_1	1	1300			
10	.*kleintier.*	01300_1	1	1300			
11	.*sparclub.*	01300_1	1	1300			
12	.*spargemeinschaft	01300_1	1	1300			
13	.*sparrunde.*	01300_1	1	1300			

```
for (i in 1:nrow(search_terms_r)){
    print(i)
    search_term <- search_terms_r[i, "search_term"]
    preliminary_ICNPO_marker <- search_terms_r[i, "preliminary_ICNPO_marker"]
    df$preliminary_ICNPO_marker[grepl(search_term, df$assoc_name, fixed=FALSE, ignore.case=TRUE) == TRUE & is.na(df$preliminary_ICNPO_marker)] <-
    preliminary_ICNPO_marker
}</pre>
```


Dictionary or rule-based approach

Performance of rule-based classification (column percent; figures are rounded; Litofcenko, Karner, Maier, 2020)

true ICNPO

		1100	1200	1300	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	% predicted ICNPO
	1100	90%	0%	0%	1%	1%	1%	0%	1%	6%	0%	1%	1%	0%	2%	19%
	1200	0%	90%	1%	0%	1%	0%	0%	0%	1%	33%	0%	0%	1%	2%	20%
	1300	1%	2%	86%	0%	2%	3%	4%	1%	3%	0%	1%	0%	2%	2%	17%
	2000	0%	0%	0%	86%	1%	1%	1%	0%	0%	0%	1%	2%	0%	2%	5%
	3000	0%	0%	0%	1%	85%	2%	2%	0%	0%	0%	1%	1%	1%	0%	2%
PO	4000	1%	0%	1%	1%	2%	85%	2%	1%	3%	17%	9%	1%	1%	2%	8%
predicted ICNPO	5000	0%	0%	0%	2%	0%	1%	79%	2%	1%	0%	0%	0%	1%	2%	2%
licted	6000	0%	0%	0%	0%	0%	0%	1%	80%	2%	0%	3%	0%	4%	0%	7%
prec	7000	0%	0%	1%	1%	0%	1%	0%	0%	64%	0%	5%	0%	1%	0%	3%
	8000	0%	0%	0%	0%	0%	0%	0%	0%	0%	17%	0%	0%	0%	0%	0%
	9000	0%	0%	0%	1%	0%	0%	0%	0%	2%	0%	53%	0%	2%	2%	1%
	10000	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	80%	1%	0%	2%
	11000	0%	0%	0%	1%	2%	0%	2%	2%	5%	0%	1%	1%	74%	2%	6%
	12000	6%	5%	10%	6%	5%	6%	8%	11%	13%	33%	23%	13%	12%	87%	9%
true (n)	ICNPO	994	1061	909	299	94	385	84	404	187	6	75	90	350	62	5000
% tr		20%	21%	18%	6%	2%	8%	2%	8%	4%	0%	2%	2%	7%	1%	100%
pred	cision	96%	98%	92%	94%	78%	85%	67%	93%	82%	100%	66%	90%	89%	12%	

Sensitivity 85%

ML and curated keywords

Improve the quality of input texts for ML - best of both worlds?

-> Decision tree with curated keywords

Original organization name	Curated association name						
Studentensport	.*ensport.* .*sport.* .*student.*						
GOLD - FINGER : gemeinnütziger Verein zur Förderung der	musikkultur musik.*.*kultur.*.*musi.*						
Musikkultur in EUROPA							
Alumni der Akademie der bildenden Künste Wien	Alumni.* akademie künste.*						
Bosniakische Kultur- und Glaubensgemeinschaft Oberland	glaubens.* bosniak.* kultur .						

ML and curated keywords

Performance of decision tree classification with curated organization names (column percent; figures are rounded; Litofcenko, Karner, Maier, 2020)

true ICNPO

		1100	1200	1300	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	% predicted ICNPO
	1100	84%	0%	1%	1%	0%	1%	0%	0%	3%	0%	0%	11%	0%	0%	39%
	1200	1%	88%	2%	2%	3%	0%	0%	0%	3%	0%	0%	0%	2%	0%	20%
	1300	13%	11%	91%	10%	10%	14%	12%	31%	40%	100%	19%	17%	19%	100%	13%
	2000	0%	0%	1%	77%	7%	1%	6%	4%	1%	0%	0%	0%	1%	0%	5%
	3000	0%	0%	0%	0%	59%	2%	0%	0%	1%	0%	0%	0%	1%	0%	2%
PO	4000	1%	1%	1%	3%	14%	75%	3%	4%	1%	0%	0%	3%	3%	0%	7%
predicted ICNPO	5000	0%	0%	0%	1%	0%	3%	67%	0%	1%	0%	5%	0%	0%	0%	1%
licted	6000	0%	0%	1%	2%	0%	1%	9%	53%	4%	0%	0%	0%	5%	0%	4%
pred	7000	0%	0%	0%	2%	0%	2%	0%	1%	42%	0%	0%	6%	0%	0%	2%
	8000	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	9000	0%	0%	0%	1%	0%	0%	0%	0%	1%	0%	76%	0%	3%	0%	1%
	10000	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	1%
	11000	1%	0%	2%	1%	7%	1%	3%	7%	3%	0%	0%	6%	66%	0%	6%
	12000	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
true (n)	ICNPO	325	358	299	103	29	138	33	112	77	1	21	35	115	21	1667
% true ICNPO		19%	21%	18%	6%	2%	8%	2%	7%	5%	0%	1%	2%	7%	1%	100%
prec	cision	95%	96%	54%	84%	77%	79%	73%	77%	76%	-	70%	91%	74%	-	

Sensitivity 77%

Hypothesis: Limitations to algorithm based on local optimization in high dimensional spaces (see also Gentzkow, Kelly, & Taddy, 2019)

Conclusion

NPOs can satisfactorily be classified according to areas of activity based on names only with semi-automated approaches

- Obtained sensitivity: 85%
- Performance not inferior to human coding
- Performance not inferior to classification based on mission/ program statements
- Best resp. only possible solution in most real-world scenarios
- Classification based on a manually generated rule-set surprisingly superior to a decision-tree classification

References

Fisher, I. E., Garnsey, M. R., & Hughes, M. E. (2016). Natural language processing in accounting, auditing and finance: A synthesis of the literature with a roadmap for future research. *Intelligent Systems in Accounting, Finance and Management*, 23(3), 157-214.

Gentzkow, M., Kelly, B., & Taddy, M. (2019). Text as data. Journal of Economic Literature, 57(3), 535-574.

Lepere-Schloop, M., Zook, S., & Bawole, J. N. (2018). NGO classification from the bottom-up: Using self-reported data and machine learning to generate categories of NGOs in Ghana. Paper presented at the ISTR 13th International Conference, Amsterdam.

Litofcenko, J., Karner, D., & Maier, F. (2020). Methods for Classifying Nonprofit Organizations According to their Field of Activity: A Report on Semi-automated Methods Based on Text. *VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations*, 31(1), 227-237.

Ma, J. (2020). Automated Coding Using Machine Learning and Remapping the US Nonprofit Sector: A Guide and Benchmark. Nonprofit and Voluntary Sector Quarterly, 0899764020968153.

Salamon, L. M., & Anheier, H. K. (1992). In search of the non-profit sector II: The problem of classification. *Voluntas: International Journal of Voluntary and Nonprofit Organizations, 3*(3), 267-309.

United Nations. (2018). Satellite Account on Non-profit and Related Institutions and Volunteer Work. Retrieved from https://unstats.un.org/unsd/nationalaccount/docs/UN TSE HB FNL web.pdf

Zhai, C. X., & Massung, S. (2016). *Text data management and analysis: a practical introduction to information retrieval and text mining*. New York, NY: Association for Computing Machinery and Morgan & Claypool.

