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Motivation

= Nonprofit organizations not systematically integrated into public statistics
= Aim: Mapping the sector according to area of activity

Empirical setting
= Registry of associations in Austria

Methods

= Classification with a rule-based or dictionary approach
= Classification with Naive Bayes, Lasso regression and decision trees

Findings
Conclusion

= NPOs can satisfactorily be classified according to areas of activity based on names only with

semi-automated approaches
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Sectoral model of society

« Third sector: Nonprofit organizations (NPOs)
following ideational goals

« Definition (salamon & Anheier, 1992: 12f):

Formal: institutionalized to some extent

Private: institutionally different from government
Non-profit-distributing: not returning profits generated
to their owner or directors

Self-governing: equipped to control their own activities
Voluntary: involving some meaningful degree of
voluntary participation, either in the actual conduct of
the agency’s activities or in the management of affairs

* Not systematically integrated into public
statistics in Austria and most countries,
although recommend by the UN statistical
division (United Nations, 2018)
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Business & professional associations,
interest groups, political associations
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Motivation

Aim: Mapping the sector according to area of activity

Third sector

Scattered data:

» Registry of associations: ~90,000

« Commercial register: ~1,200

« Payroll tax statistics: ~12,000 NPOs as
employers

+ 11 databases for ~500 foundations

* Occasional survey data (max. 12,000
participants)

~90,000 NPOs
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Registry of associations

* Ministry for the Interior
* Not publicly available

* Not digitized

Copy from business information publisher Compass Verlag GmbH
« Collects data for financial institutions

- Digitized:
- Association’s name
Address

«  Founding year
- Legal representatives
- NO bylaws or mission statements
«  Not completely up to date (most recent two years not reliable)
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Area of activity

International Classification of Nonprofit Organizations (ICNPO)
(Salamon and Anheier, 1992)

Internationally comparable, similar to NACE

ICNPO (Sub-)group number ICNPO (Sub-)group name

1 000 Culture and recreation
1100 Culture and arts
1200 Sports
1 300 Other recreation and social clubs
2 000 Education and research
3 000 Health
4 000 Social services
5000 Environment
6 000 Development and housing
7 000 Law, advocacy and politics
8 000 Philanthropic intermediaries and voluntarism promotion
9 000 International
10 000 Religion

11 000 Business and professional associations, unions

12 000 Not elsewhere classified BA
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Machine learning (ML) approaches as a common starting point
(e.g. Naive-Bayes classifiers, decision trees, regression methods, neural networks)

Catch-22

Good results with (Fisher, 2016; Lepere-Schloop, 2017; Ma, 2020)

i Large training samples
ii.  Long, high quality texts

Problems

i. Training sample needs to be constructed manually -
Best Model, trained on 3.333 cases, classifies only 49% of NPOs correctly

ii. Long texts: Not available/ quality issues
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Constructing a benchmark sample
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Performance of manual human coding (Litofcenko, Karner, Maier, 2020)

ICNPO Group

1100 Culture
1200 Sports
1300 Other Recreation and Social Clubs

2000 Education and Research
3000 Health

4000 Social Services

5000 Environment

6000 Development and Housing

7000 Law, Advocacy and Politics

8000 Philanthropic Intermediaries and Voluntarism Promotion
9000 International

10000 Religion

11000 Business and Professional Associations, Unions

12000 Not Elsewhere Classified

Total

Sensitivity = TP/p ey

Sensitivity of

True ICNPO True ICNPO Precision of mode of
(W) % mode of human human coders %
coders %
994 20% 92% 94%
1061 21% 92% 96%
909 18% 87% 84%
299 6% 86% 92%
94 2% 70% 80%
385 8% 82% 91%
84 2% 71% 92%
404 8% 85% 82%
187 4% 71% 83%
6 0% 50% 100%
75 2% 87% 88%
90 2% 66% 89%
350 2% 81% 82%
62 1% 13% 100%
5000 100% 85%
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Dictionary or rule-based approach “U

Appllca ble if (Zhai & Massung, 2016)

i. Categories are clearly defined.

ii. Categories can be relatively easily
distinguished based on surface features
in the text (e.q., particular words).

iii. Researchers have sufficient domain  remmmmrpemmmrmrrr e .

tier 1
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knowledge to suggest many effective rules. .‘* i

In the Austrian case: ——
« 3090 search terms arranged in 211 tiers ‘
« Including wildcard-lists (sports, professions, 3 N i
countries and so forth) i — m::m m
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See https://epub.wu.ac.at/6767/

A B C D
preliminary ICNPO_ )
search_term tier ICNPO_category
1 marker
2 |.*musikfreunde 01100 1 1 1100
3 |kapelle 01100 1 1 1100
4 |museum 01100 1 1 1100
5 |musikfreunde 01100_1 1 1100
& |traditionsverband 01100 1 1 1100
7 |.*chor 01100 4 1 1100
*absolventen.® 01300 1 1 1300
8 |.*kanarien.® 01300 1 1 1300
10 |.*kleintier.® 01300_1 1 1300
11 |.*sparclub.® 01300 1 1 1300
12 |.*spargemeinschaft 01300 1 1 1300
13 | *sparrunde.® 01300 1 1 1300

for (i in 1:nrow(search_terms_r)){

print(i)

search_term <- search_terms_r[i, "search_term"]

preliminary_ICNPO_marker <- search_terms_r[i, "preliminary_ICNPO_marker"]

df$preliminary_ICNPO_marker[grepl(search_term, df$assoc_name, fixed=FALSE, ignore.case=TRUE) == TRUE & is.na(df$preliminary_ICNPO_marker)] <-
preliminary_ICNPO_marker
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Dictionary or rule-based approach
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Performance of rule-based classification
(column percent; figures are rounded; Litofcenko, Karner, Maier, 2020)

true ICNPO
1100 | 1200 | 1300 2000 | 3000 | 4000 | 5000 @ 6000 | 7000 | 8000 | S000 | 10000 | 11000 | 12000 " predicted
ICNPO
1100 90% | 0% | 0% 1% | 1% 1% | 0% 1% | &% 0% 1% 1% 0% 2% 19%
1200 0% | 90% | 1% | 0% | 1% | 0% | 0% | 0% 1% 33% 0% 0% 1% 2% 20%
1300 1% | 2% | 86% 0% | 2% | 3% | 4% 1% | 3% 0% 1% 0% 2% 2% 17%
2000 0% | 0% | 0% | 86% 1% 1% 1% 0% | 0% 0% 1% 2% 0% 2% 5%
3000 0% | 0% | 0% 1% | 83% | 2% | 2% | 0% | 0% 0% 1% 1% 1% 0% 2%
o 4000 1% | 0% 1% 1% | 2% | 85% | 2% 1% | 3% 17% 9% 1% 1% 2% 8%
E 5000 0% | 0% | 0% | 2% | 0% 1% | 79% | 2% 1% 0% 0% 0% 1% 2% 2%
_?g 6000 0% | 0% | 0% | 0% | 0% | 0% 1% | 80% | 2% 0% 3% 0% 4% 0% 7%
-g 7000 0% | 0% 1% 1% | 0% 1% | 0% | 0% | 64% 0% 3% 0% 1% 0% 3%
8000 0% | 0% | 0% | 0% | 0% | 0% | 0% 0% | 0% 17% 0% 0% 0% 0% 0%
5000 0% | 0% | 0% 1% | 0% | 0% 0% 0% | 2% 0% 53% | 0% 2% 2% 1%
10000 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% 1% 0% 0% | 80% 1% 0% 2%
11000 0% | 0% | 0% 1% | 2% | 0% | 2% | 2% | 5% 0% 1% 1% 74% 2% 6%
12000 6% | 5% | 10% | 6% | 5% | 6% | 8% | 11% | 13% | 33% | 23% | 13% 12% 87% 9%
true ICNPO
@ 994 | 1061 | 909 | 299 | 94 385 84 404 | 187 6 75 90 350 62 5000
% true
T 20% | 21% | 18% 6% | 2% | 8% | 2% | 8% | 4% 0% 2% 2% 7% 1% 100%
precision 96% | 98%  92%  94% | 78% | 83% | 67%  93% | 82% | 100% | 66% | S0% | 89% 12%

Sensitivity 85%
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ML and curated keywords “U
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Improve the quality of input texts for ML - best of both worlds?

-> Decision tree with curated keywords

Original organization name Curated association name

Studentensport Fensport.* .*sport.* . *student.®
GOLD - FINGER : gemeinniitziger Verein zur Fiorderung der musikkultur musik.* . *kultur.* .*musi.*

Musikkultur in EUROPA

Alumni der Akademie der bildenden Kiinste Wien Alumni.* akademie kiinste.*
Bosniakische Kultur- und Glaubensgemeinschaft Oberland glaubens.* bosniak.* kultur .
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ML and curated keywords
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Performance of decision tree classification with curated organization names
(column percent; figures are rounded; Litofcenko, Karner, Maier, 2020)

true ICNPO
1100 | 1200 | 1300 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | 10000 | 11000 | 12000 7o predicted
ICNPO
1100 84% | 0% 1% 1% | 0% | 1% | 0% | 0% 3% 0% 0% | 11% 0% 0% 39%
1200 1% | 88% | 2% | 2% | 3% 0% | 0% | 0% 3% 0% 0% 0% 2% 0% 20%
1300 13% | 11% | 91% | 10% | 10% | 14% | 12% | 31% | 40% | 100% | 19% | 17% 19% 100% 13%
2000 0% | 0% 1%  77% | 7% | 1% | 6% | 4% 1% 0% 0% 0% 1% 0% 5%
3000 0% | 0% 0% | 0% | 59% 2% | 0% | 0% 1% 0% 0% 0% 1% 0% 2%
o 4000 1% 1% 1% 3% | 14% | 73% 3% | 4% 1% 0% 0% 3% 3% 0% 7%
5 5000 0% 0% 0% 1% | 0% | 3% | 67% 0% 1% 0% 3% 0% 0% 0% 1%
E 6000 0% 0% 1% 2% | 0% | 1% | 9% | 53% | 4% 0% 0% 0% 5% 0% 4%
E 7000 0% 0% 0% 2% | 0% | 2% | 0% 1% | 42% 0% 0% 6% 0% 0% 2%
8000 0% 0% 0% 0% | 0% | 0% | 0% | 0% 0% 0% 0% 0% 0% 0% 0%
9000 0% | 0% 0% 1% | 0% | 0% | 0% | 0% 1% 0% 76% | 0% 3% 0% 1%
10000 0% | 0% 0% 1% | 0% | 0% | 0% | 0% 0% 0% 0% | 57% 0% 0% 1%
11000 1% | 0% | 2% 1% | 7% | 1% | 3% | 7% 3% 0% 0% 6% 66% 0% 6%
12000 0% | 0% 0% | 0% | 0% | 0% | 0% | 0% 0% 0% 0% 0% 0% 0% 0%
Z;eICNPO 325 | 358 | 299 | 103 29 138 33 112 77 1 21 35 115 21 1667
% true 19% | 21% | 18% 6% | 2% | 8% 2% | 7% 3% 0% 1% 2% 7% 1% 100%
ICNPO
precision 95% | 96% | 54%  84%  T7% T79% | 73%  T7% @ T76% - T70% | 91% | T4% -

Sensitivity 77%

Hypothesis:

Limitations to algorithm based
on local optimization in high
dimensional spaces

(see also Gentzkow, Kelly, &
Taddy, 2019)
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NPOs can satisfactorily be classified according to areas of activity based on
names only with semi-automated approaches

= Obtained sensitivity: 85%
= Performance not inferior to human coding

= Performance not inferior to classification based on mission/ program
statements

= Best resp. only possible solution in most real-world scenarios

= (Classification based on a manually generated rule-set surprisingly
superior to a decision-tree classification
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approach
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