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Outline

Goal:
outlining the conceptual framework we have implemented at
Statistics Austria to
I facilitate the automated building
I deployment of R projects and packages

Our environment consists of:

a Linux-Server (Ubuntu )

R -Server (Rstudio-Server Pro )

a Git-server (Bitbucket )

a Build-server (Jenkins )

an Artifact repository manager (JFrog Artifactory )
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https://ubuntu.com/
https://rstudio.com/products/rstudio-server-pro/
https://bitbucket.org/product/de/enterprise
https://www.jenkins.io/
https://jfrog.com/artifactory/


Server Infrastructure

R Server: two Ubuntu server (prod + dev)

RStudio professional
various R-installations with a well-maintained library of packages

BitBucket: Enterprise-edition of Bitbucket server

has support for Webhooks and features a REST API

Jenkins Server: also supports a REST API
Jfrog Artifactory: used to host

CRAN-like repo for internal packages
cached versions of external CRAN-mirror
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Workflow

 connected with git-repo  contains  Rstudio Project BitbucketJenkinsfile
jenkins.yaml
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 optionally deploys to optionally with ssh-deployment

Linux-Servers

Email-Notification
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Desired Workflow

a RStudio-project is connected a Bitbucket repository (using git)
Bitbucket notifies the Build-Server (Jenkins) if the repo was updated
(via webhook)
Jenkins runs a pipeline using special inputs contained in the
repository
the pipeline loads R -pkg buildSTAT that checks what should be built

Case 1: R -package:
I dependencies are resolved; package is built, checked and tested
I optionally uploaded to the artifactory repository (internal CRAN-repo)
I the package can then be installed via install.packages()

Case 2: R -Project
I scripts in the project are run
I possible deployments via ssh
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Specify build-behaviour via yaml-config (1)

Repos that are built on Jenkins need to include two files

Jenkinsfile : defines the pipeline (and R-version) under which the
project/package should be built
jenkins.yaml : defines options that are used during the build such as

I installation of additional R or system-packages
I who should be notified
I how should be dealt with warnings, notes, . . .
I should the package (on a successful build) be pushed to the

artifactory
I should a pkgdown-site be created?
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Specify build-behaviour via yaml-config (2)

Some further possibilities:
caching of R packages and/or a TinyTex installation can be required
to speed-up build-times
definition of (optional) scripts (R , bash , python , . . . ) that should
run before/after building

yaml -definition has sensible defaults (few settings required)

## file: Jenkinsfile
@Library("jenkins-r-shared-library") _
rPipelineYAML(
docker_image: "library/r-base:4.0.3-stat-latest",
config: "jenkins.yaml"

)

## file: jenkins.yaml
cache:
- r
mail:
- bernhard.meind@statistik.gv.at
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Setup with REST API calls (1)

quite a few components play together
we wanted an easy way for our colleagues to get started
required resources:

an RStudio project
a BitBucket repository
A Jenkins job

next steps:
the Rstudio-Project needs to be linked with Bitbucket
Bitbucket needs to be linked with Jenkins

Idea:
create a workflow package useSTAT similar to usethis

the required steps are facilitated by exploiting the available APIs of
BitBucket and Jenkins
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https://github.com/r-lib/usethis


Setup with REST API calls (2)

required steps with useSTAT :

open a new R session in Rstudio and run the following steps

# create a new RStudio project (package)
# from an internal template
useSTAT::create_stat_package("~/projects/newPackage")

# create a new BitBucket repo and links it
# to the RStudio project
useSTAT::use_git()
useSTAT::use_statbucket()

# creates a Jenkins job and links it with BitBucket
useSTAT::use_jenkins()

we can now push changes and watch Jenkins go to work!
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Pros/Cons of this approach

Pros:
easy for people without DevOps experience to set up a new package
consistent package definitions (e.g adding the git-commit id to
DESCRIPTION )
consistent quality checks across internal packages

Cons:
API keys are required for the useSTAT→ managed with internal

packages authSTAT , apiSTAT

Updating the yaml definition (new options) is tedious to test because
all tests need to run in docker containers
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Experience

overall, few problems
the cons of the initial setup outweigh the benefits (consistency)
quite happy as new features (e.g secrets) in the pipeline can be
implemented easily via buildSTAT
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