
Bernhard Meindl
Gregor de Cilla

Alexander Kowarik
Statistics Austria

Vienna
December 2020

DevOps and R
Experiences at Statistics Austria

www.statistik.at We provide information

Outline

Goal:
outlining the conceptual framework we have implemented at
Statistics Austria to
I facilitate the automated building
I deployment of R projects and packages

Our environment consists of:

a Linux-Server (Ubuntu)

R -Server (Rstudio-Server Pro)

a Git-server (Bitbucket)

a Build-server (Jenkins)

an Artifact repository manager (JFrog Artifactory)

www.statistik.at slide 2 | December 2020

https://ubuntu.com/
https://rstudio.com/products/rstudio-server-pro/
https://bitbucket.org/product/de/enterprise
https://www.jenkins.io/
https://jfrog.com/artifactory/

Server Infrastructure

R Server: two Ubuntu server (prod + dev)

RStudio professional
various R-installations with a well-maintained library of packages

BitBucket: Enterprise-edition of Bitbucket server

has support for Webhooks and features a REST API

Jenkins Server: also supports a REST API
Jfrog Artifactory: used to host

CRAN-like repo for internal packages
cached versions of external CRAN-mirror

www.statistik.at slide 3 | December 2020

Workflow

 connected with git-repo contains Rstudio Project BitbucketJenkinsfile
jenkins.yaml

Buildserver (jenkins)

notifies

clones

buildSTAT runs

uses options from

is
Package

 decides

 yes Build/Check/Test no run Code/Scripts

Artifactory

 optionally deploys to optionally with ssh-deployment

Linux-Servers

Email-Notification

www.statistik.at slide 4 | December 2020

Desired Workflow

a RStudio-project is connected a Bitbucket repository (using git)
Bitbucket notifies the Build-Server (Jenkins) if the repo was updated
(via webhook)
Jenkins runs a pipeline using special inputs contained in the
repository
the pipeline loads R -pkg buildSTAT that checks what should be built

Case 1: R -package:
I dependencies are resolved; package is built, checked and tested
I optionally uploaded to the artifactory repository (internal CRAN-repo)
I the package can then be installed via install.packages()

Case 2: R -Project
I scripts in the project are run
I possible deployments via ssh

www.statistik.at slide 5 | December 2020

Specify build-behaviour via yaml-config (1)

Repos that are built on Jenkins need to include two files

Jenkinsfile : defines the pipeline (and R-version) under which the
project/package should be built
jenkins.yaml : defines options that are used during the build such as

I installation of additional R or system-packages
I who should be notified
I how should be dealt with warnings, notes, . . .
I should the package (on a successful build) be pushed to the

artifactory
I should a pkgdown-site be created?

www.statistik.at slide 6 | December 2020

Specify build-behaviour via yaml-config (2)

Some further possibilities:
caching of R packages and/or a TinyTex installation can be required
to speed-up build-times
definition of (optional) scripts (R , bash , python , . . .) that should
run before/after building

yaml -definition has sensible defaults (few settings required)

file: Jenkinsfile
@Library("jenkins-r-shared-library") _
rPipelineYAML(
docker_image: "library/r-base:4.0.3-stat-latest",
config: "jenkins.yaml"

)

file: jenkins.yaml
cache:
- r
mail:
- bernhard.meind@statistik.gv.at

www.statistik.at slide 7 | December 2020

Setup with REST API calls (1)

quite a few components play together
we wanted an easy way for our colleagues to get started
required resources:

an RStudio project
a BitBucket repository
A Jenkins job

next steps:
the Rstudio-Project needs to be linked with Bitbucket
Bitbucket needs to be linked with Jenkins

Idea:
create a workflow package useSTAT similar to usethis

the required steps are facilitated by exploiting the available APIs of
BitBucket and Jenkins

www.statistik.at slide 8 | December 2020

https://github.com/r-lib/usethis

Setup with REST API calls (2)

required steps with useSTAT :

open a new R session in Rstudio and run the following steps

create a new RStudio project (package)
from an internal template
useSTAT::create_stat_package("~/projects/newPackage")

create a new BitBucket repo and links it
to the RStudio project
useSTAT::use_git()
useSTAT::use_statbucket()

creates a Jenkins job and links it with BitBucket
useSTAT::use_jenkins()

we can now push changes and watch Jenkins go to work!

www.statistik.at slide 9 | December 2020

Pros/Cons of this approach

Pros:
easy for people without DevOps experience to set up a new package
consistent package definitions (e.g adding the git-commit id to
DESCRIPTION)
consistent quality checks across internal packages

Cons:
API keys are required for the useSTAT→ managed with internal

packages authSTAT , apiSTAT

Updating the yaml definition (new options) is tedious to test because
all tests need to run in docker containers

www.statistik.at slide 10 | December 2020

Experience

overall, few problems
the cons of the initial setup outweigh the benefits (consistency)
quite happy as new features (e.g secrets) in the pipeline can be
implemented easily via buildSTAT

www.statistik.at slide 11 | December 2020

