Revisiting Rogers and Castros multi-exponential models for migration estimation UoROS2020

J. Sebastian Ruiz-Santacruz, ADRI - Shanghai University and Externado de Colombia University
Mabelin Villareal-Fuentes, International Labour Organization

Migration age schedule: Why is important?

- ▶ It describes the migration age pattern associated to selectivity as an interaction of push and pull factors in origin-destination areas.
- ▶ It allows visual comparisons about the intensity and the migrant population general structure.

Rogers and Castro model 1981

- ▶ It estimates a migration schedule based on exponential curves that belong to a demographic behaviour.
- ▶ Give us some demo-economic parameters.
- Other alternatives are kernel smothing (in case of under-5 child over estimation suspicion) and non parametrical parameters based on the curves.
- Ohter definitions: post-retirement (Wilson, 2020)
- Other options: non-parametric measures based on the form (Bernard, 2013).

Uses

- ► Some countries still need methods to smooth migration and grasp the mean behaviour of the migration calendar.
- ► There are opportunities to use it in estimation children under 5 years old. P. e. When empirical data shows it historically. (!!)
- Population projections.

Migration parameters

Multi-exponential model:

$$M(x) = a_1 e^{-\alpha 1 x} + a_2 e^{-\alpha 2(x-\mu 2) - e^{-\lambda 2(x-\mu 2)}} + a_3 e^{-\alpha 3(x-\mu 3) - e^{-\lambda 3(x-\mu 3)}} + a_4 e^{\lambda 4 x} + c$$

- 7,9,11 y 13
- M(x): Standardized age rate x.
- μ_2 , μ_3 : Location parameters.
- · a1, a2, a3, a4: Levels and equation coeficients.
- * α 1, λ 2, α 2, λ 3, α 3, λ 4). Demo-economic descriptions.
- · Ratios:
 - · a1/a2: Dominant labour curve
 - a2/a1: Infant dependency indicator
 - λ2/α2: Labour curve asimetry

Figure 1: Based in Rogers and Castro, 1981

Procedure

migraR package

migraR

R package for migration analysis focused now on the Rogers and Castro multi exponential model and the estimation of the parameters using a simulation based on uniform a priori distributions for each parameter between 0 and 1, and 0 to 100 in the case of the location parameters corresponding to ages in the migration pattern.

More information: https://github.com/elflacosebas/migraR

Example

```
# Calling packages and dataset.
library(migraR)
library(dplyr)
library(tidyverse)
data("es asmr")
data1 <- es asmr[-c(1,2),c(1,6)]
colnames(data1) <- c("x", "v")
# Fitting and Plotting data
fitted.val.7 <- best migramod(dataIn = data1, maxite = 200, profile = "seven")
fitted.val.9 <- best migramod(dataIn = data1, maxite = 200, profile = "nine")
fitted.val.11 <- best migramod(dataIn = data1, maxite = 200, profile = "eleven")
fitted.val.13 <- best migramod(dataIn = data1, maxite = 200, profile = "thirteen")
x11()
plot(data1, cex=0.1, xlab = 'Age',
    vlab = 'Standardized Migration Rate')
lines(data1[,1], fitted.val.7$modelClass$value(fitted.val.7$bestParam,data1), col="blue")
lines(data1[.1], fitted.val.9$modelClass$value(fitted.val.9$bestParam.data1), col="orange")
lines(data1[,1], fitted.val.11$modelClass$value(fitted.val.11$bestParam,data1), col="blue", lty=3)
lines(data1[,1], fitted.val.13$modelClass$value(fitted.val.13$bestParam.data1), col="green")
legend('topright',
        legend = c(paste("(7)", "MAPE:", round(as.numeric(fitted.val.7$bestMAPE),2),
                        "R2:", round(as.numeric(fitted.val.7$bestRcuad),3)),
                   paste("(9)", "MAPE:", round(as.numeric(fitted.val.9$bestMAPE),2),
                         "R2:", round(as.numeric(fitted.val.9$bestRcuad),3)),
                   paste("(11)", "MAPE:", round(as.numeric(fitted.val.11$bestMAPE),2),
                        "R2:", round(as.numeric(fitted.val.11$bestRcuad).3)).
                   paste("(13)", "MAPE:", round(as.numeric(fitted.val.13$bestMAPE),2),
                         "R2:", round(as.numeric(fitted.val.13$bestRcuad),3))),
                  col = c("red", 'orange', "blue", "darkgreen"), lty = c(2,6,3,5))
```

Example

Application Results

- Data on Latin American migration: REDATAM project https://bit.ly/3qf454D
- ▶ Most of the models adjusted ended in 11 or 13 parameters (115 out of 139 pairs of origin-destination).
- ▶ Many curves do not fit with the pattern because there is a curve between 5 and 15 aprox that we have called: Child migration delay.
- ▶ Candidate to be a mechanism of migration (internal or international).
- Worst estimation of the post-retirement migration peak.

Results: Two examples

Model 1: Colombia - Venezuela (Hombres) Model 2: Colombia - Venezuela (Mujeres) Model 3: Argentina - Bolivia (Hombres) Model 4: Argentina - Bolivia (Mujeres)

Results Final parameters

Parametros	Mujeres: Colombia – Venezuela 2011			Mujeres: Argentina – Bolivia 2001		
	Valor	5%	95%	Valor	5%	95%
al_0	0.512	0.225	0.877	0.863	0.224	0.877
α1_0	0.654	0.225	0.878	0.394	0.224	0.878
a2_0	0.058	0.224	0.878	0.398	0.226	0.877
μ2_0	38.000	23.000	87.000	23.000	23.000	87.000
α2_0	0.826	0.227	0.878	0.876	0.224	0.878
λ2_0	0.253	0.226	0.877	0.031	0.226	0.878
a3_0	0.837	0.226	0.878	0.686	0.223	0.877
μ3_0	27.000	23.000	87.000	21.000	23.000	87.000
α3_0	0.806	0.227	0.877	0.751	0.224	0.877
λ3_0	0.534	0.224	0.878	0.008	0.225	0.877
a4_0	0.531	0.224	0.877	0.624	0.227	0.877
λ4_0	0.782	0.225	0.878	0.562	0.225	0.878
c1_0	0.085	0.248	0.975	0.573	0.251	0.976
al hat	0.690	0.700	0.700	0.700	0.700	0.700
αl hat	0.028	0.013	0.127	0.017	0.001	0.179
a2_hat	0.700	0.000	0.700	0.700	0.000	0.700
μ2_hat	32.481	19.879	88.000	17.854	23.229	88.000
α2_hat	0.423	0.058	0.700	0.166	0.034	0.700
λ2_hat	0.124	0.122	0.700	0.000	0.075	0.700
a3_hat	0.700	0.000	0.700	0.700	0.000	0.700
μ3_hat	28.529	19.656	88.000	46.646	22.911	88.000
α3_hat	0.150	0.064	0.700	0.360	0.041	0.700
λ3 hat	0.527	0.136	0.700	0.083	0.081	0.700
a4 hat	0.670	0.619	0.700	0.685	0.700	0.700
λ4_hat	0.000	0.000	0.516	0.000	0.000	0.167
c1_hat	0.690	0.645	0.700	0.685	0.700	0.700
ECM	0.023	0.062	4.618	0.297	3.365	34.645
MAPE	2.316	3.616	24.904	6.420	12.817	54.731

Results: Influence of initial values on the MSE

Results: Final parameters

Results: Final parameters

Results: Final parameters

Results: Typology

Results

Using the logarithm of the estimated ratios we can say that the latinamerican migration system has a medium-high child dependency, a predominance of labour force curve and a very asymetric labour force curve, are congruent with the reality of Latin American migrations.

▶ The more child dependency the less is the symmetry.

Why is important for the ILO?

- ▶ It is necessary to establish robust historical measures that allow their projection and allow to carry out public policy scenarios.
- ► Could be part of a country classification according to migration characteristics that lead to better standardization.
- Knowing various estimation methodologies provides feedback for the collection and harmonization data methods.
- Having other approaches to labour force estimation due to migration with other sources rather than LFS.

Ongoing work

- Detection and analysis of international emigration using administrative register of migration Colombia (Statistics Colombia).
- Using Spanish administrative data to see a better child curve and defining what we could say about. 15 parameter model (A. Mendoza, Treasury - Colombia and J. Recano CED - Barcelona).
- ▶ Bayesian hierarchical model: Incorporate beta priors and some imputs as GDP and others.
- Combining this results with the ones obtained with the ILO bulk information (Advice M. Villareal, ILO)