
Programming and collaborations:
roles and tools when using R

Isabella Gollini
@IsabellaGollini
isabella.gollini@ucd.ie

https://igollini.github.io/
http://twitter.com/IsabellaGollini
mailto:isabella.gollini@ucd.ie

Programming & Collaborating

Methods Efficiency

User-friendly

Applications

How to combine them?

Use different perspectives!

Different perspectives

Developer

Teacher

Learner

Collaborator

• Your programming style should be accessible to allow users to
understand it and potential contribute by extending improving your code

Clear programming style

style.tidyverse.org

https://style.tidyverse.org/

• Be careful with package dependences! They may stop to maintain it, or
make major changes!

• Always make a note of which functions you are calling from that package
(if not too many!)

• Call external functions with package::function()

• Check if you can remove them! For example move from the magrittr
pipe operator %>% to the native pipe |>

Package dependences

Commenting
• Your code is under continual development and can be a good starting

point for the implementation of more advanced methodologies.

• You may need to share your code. Keep it full of comments.

• If you are using R, write at the top of each functions comments that can
be converted with roxygen2 into function documentation!

•

roxygen2.r-lib.org/

https://roxygen2.r-lib.org/

You write specially formatted comments in .R

#' Add a Column to a Data Frame
#'
#' Allows you to specify the position. Will replace existing variable
#' with the same name if present.
#'
#' @param x A data frame
#' @param name Name of variable to create. If a variable of that name
#' already exists it will be replaced
#' @param value Values to insert.
#' @param where Position to insert. Use 1 to insert on LHS, or -1 to insert on
#' RHS.
#' @examples
#' df <- data.frame(x = 1:5)
#' add_col(df, "y", runif(5))
#' add_col(df, "y", runif(5), where = 1)
#'
#' add_col(df, "x", 5:1)

You write specially formatted comments in .R

#' Add a Column to a Data Frame
#'
#' Allows you to specify the position. Will replace existing variable
#' with the same name if present.
#'
#' @param x A data frame
#' @param name Name of variable to create. If a variable of that name
#' already exists it will be replaced
#' @param value Values to insert.
#' @param where Position to insert. Use 1 to insert on LHS, or -1 to insert on
#' RHS.
#' @examples
#' df <- data.frame(x = 1:5)
#' add_col(df, "y", runif(5))
#' add_col(df, "y", runif(5), where = 1)
#'
#' add_col(df, "x", 5:1)

 Roxygen comment

 Roxygen tag

RStudio helps you remember

R packages
• roxygen2 works for documenting R packages.

•

roxygen2.r-lib.org/

https://roxygen2.r-lib.org/

roxygen2 translates to .Rd

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/add_col.R
\name{add_col}
\alias{add_col}
\title{Add a Column to a Data Frame}
\usage{
add_col(x, name, value, where = -1)
}
\arguments{
\item{x}{A data frame}

\item{name}{Name of variable to create. If a variable of that name
already exists it will be replaced}

\item{value}{Values to insert.}

\item{where}{Position to insert. Use 1 to insert on LHS, or -1 to
insert on
RHS.}
}
\description{
Allows you to specify the position. Will replace existing variable
with the same name if present.
}

Don’t modify the .Rd
file if you used
roxygen2

R translates to  
.html for viewing

Create your own package!

Write your R package
• Start thinking about writing an R package as soon as you write your first function for

your project, or even before.

• usethis::create_package(“mypackage”) will setup your package

• Check if the package name is available: available::available("mypackage")

• Easy to share, great documentation, an excuse to keep your folders tidy!

r-pkgs.org/

https://r-pkgs.org/

Build a website for your package
• pkgdown::build_site() will create your website

Home page with “home” icon:

• automatically generated from one of the following four files: index.Rmd; README.Rmd; index.md; README.md

Reference:

• The function reference generates one page for each .Rd file in man/, by default generate an overall index, which

is an alphabetically ordered list of functions.

If the files are available in the package:

Articles:

• automatically build the .Rmd vignettes

News:

• if NEWS.md is present

Get Started

• if you have an article with the same name as the package.

A link to your your github repo (if listed in the DESCRIPTION url field). pkgdown.r-lib.org/

http://pkgdown.r-lib.org/

Git & GitHub/GitLab
• Efficient and reliable code, well maintained and available on software

development platforms e.g.,

happygitwithr.com

• For Version Control

• To share your work

• To collaborate

http://happygitwithr.com

Reproducibility & Dynamic report
• File format easy to use for all the collaborators, such as

Where you intersperse code chunks (R, Python, Julia, C++, SQL) with markdown
text

• Options can be controlled on a document or chunk level whether to show code
and/or output.

•

rmarkdown.rstudio.com quarto.org

https://rmarkdown.rstudio.com/
https://quarto.org/

Reproducibility & Dynamic report
• Incorporate code inline by using starting with `r and ending with `,

or code chunks by starting with ```{r} and ending with ```

Reproducibility & Dynamic report
• Use R Sweave if you like to add R code on LaTex.

• Just change the file extension from .tex to .Rnw

• Incorporate code inline by using \Sexpr{}, or code chunks by
starting with <<>>= and ending with @

• vignette("Sweave", package = “utils")

•

yihui.org/knitr/

https://yihui.org/knitr/

https://www.freepik.com/premium-vector/scary-halloween-scarecrow-illustration_10278917.htm

Not all collaborators love coding
• Choose alternative to show you code:

• Just show the output if working on a document

• Create a nice package with user friendly functions that
minimise the amount of code needed

• Create nice interfaces

shiny.rstudio.com/

https://shiny.rstudio.com/

Teach (& Learn)

Be part of your communities
• Engagement & interaction with other practitioners is

crucial

Recap
• Write neat code full of comments

• Use

• Write reproducible and dynamic reports

• Your code must be accessible and easy to use

• Share your work and listen to all feedback

THANK YOU!

